Matplotlib is the "grandfather" library of data visualization with Python. It was created by John Hunter. He created it to try to replicate MatLab's (another programming language) plotting capabilities in Python. So if you happen to be familiar with matlab, matplotlib will feel natural to you.
It is an excellent 2D and 3D graphics library for generating scientific figures.
Some of the major Pros of Matplotlib are:
Matplotlib allows you to create reproducible figures programmatically. Let's learn how to use it! Before continuing this lecture, I encourage you just to explore the official Matplotlib web page: http://matplotlib.org/
You'll need to install matplotlib first with either:
conda install matplotlib
or pip install matplotlib
Import the matplotlib.pyplot
module under the name plt
(the tidy way):
import matplotlib.pyplot as plt
You'll also need to use this line to see plots in the notebook:
%matplotlib inline
That line is only for jupyter notebooks, if you are using another editor, you'll use: plt.show()
at the end of all your plotting commands to have the figure pop up in another window.
Let's walk through a very simple example using two numpy arrays:
Let's walk through a very simple example using two numpy arrays. You can also use lists, but most likely you'll be passing numpy arrays or pandas columns (which essentially also behave like arrays).
The data we want to plot:
import numpy as np
x = np.linspace(0, 5, 11)
y = x ** 2
x
y
We can create a very simple line plot using the following ( I encourage you to pause and use Shift+Tab along the way to check out the document strings for the functions we are using).
plt.plot(x, y, 'r') # 'r' is the color red
plt.xlabel('X Axis Title Here')
plt.ylabel('Y Axis Title Here')
plt.title('String Title Here')
plt.show()
# plt.subplot(nrows, ncols, plot_number)
plt.subplot(1,2,1)
plt.plot(x, y, 'r--') # More on color options later
plt.subplot(1,2,2)
plt.plot(y, x, 'g*-');
Now that we've seen the basics, let's break it all down with a more formal introduction of Matplotlib's Object Oriented API. This means we will instantiate figure objects and then call methods or attributes from that object.
The main idea in using the more formal Object Oriented method is to create figure objects and then just call methods or attributes off of that object. This approach is nicer when dealing with a canvas that has multiple plots on it.
To begin we create a figure instance. Then we can add axes to that figure:
Use .figure()
to create figure (empty canvas)
fig = plt.figure()
Use .add_axes([list])
to add axis and choose its location in size. The .add_axes()
method takes into a list of four arguments: left, bottom, width, height ranged from 0 to 1
axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)
Use .plot()
to plot, .set_xlabel()
, .set_ylabel()
and .set_title()
to set the x-axis label, y-axis label and title respectively
axes.set_xlabel('Set X Label') # Notice the use of set_ to begin methods
axes.set_ylabel('Set y Label')
axes.set_title('Set Title')
axes.plot(x, y, 'b')
Code is a little more complicated, but the advantage is that we now have full control of where the plot axes are placed, and we can easily add more than one axis to the figure:
Use .figure()
to create figure (blank canvas)
fig = plt.figure()
Use .add_axes()
to add two sets of axes: main axes and insert axes. Recall that the .add_axes()
method takes into a list of four arguments: left, bottom, width, height ranged from 0 to 1
axes1 = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # main axes
axes2 = fig.add_axes([0.2, 0.5, 0.4, 0.3]) # inset axes
Plot on Larger Figure Axes 1
axes1.plot(x, y, 'b')
axes1.set_xlabel('X_label_axes2')
axes1.set_ylabel('Y_label_axes2')
axes1.set_title('Axes 2 Title')
Plot on Insert Figure Axes 2
# Insert Figure Axes 2
axes2.plot(y, x, 'r')
axes2.set_xlabel('X_label_axes2')
axes2.set_ylabel('Y_label_axes2')
axes2.set_title('Axes 2 Title');
The plt.subplots()
object will act as a more automatic axis manager.
Basic use cases:
Use plt.subplots()
to unpack tuple and grab fig and axes
fig, axes = plt.subplots()
Now use the axes object to add stuff to plot
axes.plot(x, y, 'r')
axes.set_xlabel('x')
axes.set_ylabel('y')
axes.set_title('title');
You can specify the number of rows and columns when creating the subplots()
object by passing in arguments nrows
and ncols
to .subplot()
. The subplot()
method will automatically add the axes, just like what fig.add_axes()
does for you
Empty canvas of 1 by 2 subplots
fig, axes = plt.subplots(nrows=1, ncols=2)
The unpacked axes from .subplots()
is an array of metplotlib Axes object
axes
We can iterate through this array:
for ax in axes:
ax.plot(x, y, 'b')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('title')
# Display the figure object
fig
axes[0].plot(x, y)
A common issue with matplolib is overlapping subplots or figures. We ca use fig.tight_layout() or plt.tight_layout() method, which automatically adjusts the positions of the axes on the figure canvas so that there is no overlapping content:
fig, axes = plt.subplots(nrows=1, ncols=2)
for ax in axes:
ax.plot(x, y, 'g')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('title')
fig
plt.tight_layout()
Since we can iterate through this axes object, we can also index it. To plot on the first axes:
Matplotlib allows the aspect ratio, DPI and figure size to be specified when the Figure object is created. You can use the figsize
and dpi
keyword arguments.
figsize
is a tuple of the width and height of the figure in inchesdpi
is the dots-per-inch (pixel per inch). For example:
fig = plt.figure(figsize=(8,4), dpi=100)
The same arguments can also be passed to layout managers, such as the subplots
function:
fig, axes = plt.subplots(figsize=(12,3))
axes.plot(x, y, 'r')
axes.set_xlabel('x')
axes.set_ylabel('y')
axes.set_title('title');
Matplotlib can generate high-quality output in a number formats, including PNG, JPG, EPS, SVG, PGF and PDF.
To save a figure to a file we can use the savefig
method in the Figure
class:
fig.savefig("filename.png")
Here we can also optionally specify the DPI and choose between different output formats:
fig.savefig("filename.png", dpi=200)
Now that we have covered the basics of how to create a figure canvas and add axes instances to the canvas, let's look at how decorate a figure with titles, axis labels, and legends.
A title can be added to each axis instance in a figure. To set the title, use the set_title
method in the axes instance:
ax.set_title("title");
Similarly, with the methods set_xlabel
and set_ylabel
, we can set the labels of the X and Y axes:
ax.set_xlabel("x")
ax.set_ylabel("y");
You can use the label="label text" keyword argument when plots or other objects are added to the figure, and then using the legend method without arguments to add the legend to the figure:
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
ax.plot(x, x**2, label="x**2")
ax.plot(x, x**3, label="x**3")
ax.legend()
Notice how are legend overlaps some of the actual plot!
The legend function takes an optional keyword argument loc that can be used to specify where in the figure the legend is to be drawn. The allowed values of loc are numerical codes for the various places the legend can be drawn. See the documentation page for details. Some of the most common loc values are:
# Lots of options....
ax.legend(loc=1) # upper right corner
ax.legend(loc=2) # upper left corner
ax.legend(loc=3) # lower left corner
ax.legend(loc=4) # lower right corner
# .. many more options are available
# Most common to choose
ax.legend(loc=0) # let matplotlib decide the optimal location
fig
You can put the legend outside of plot by passing argument bbox_to_anchor=(1, 0.5)
to the legend()
method. Refer to <a href= "https://stackoverflow.com/questions/23556153/how-to-put-legend-outside-the-plot-with-pandas" target="_blank">this post</a> for more details
import pandas as pd
import matplotlib.pyplot as plt
df3 = pd.read_csv('df3')
%matplotlib inline
df3.iloc[:30].plot(kind='area', alpha=0.4)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
Matplotlib gives you a lot of options for customizing colors, linewidths, and linetypes.
There is the basic MATLAB like syntax (which I would suggest you avoid using for more clairty sake:
With matplotlib, we can define the colors of lines and other graphical elements in a number of ways. First of all, we can use the MATLAB-like syntax where 'b'
means blue, 'g'
means green, etc. The MATLAB API for selecting line styles are also supported: where, for example, 'b.-'
means a blue line with dots:
MATLAB style line color and style
fig, ax = plt.subplots()
ax.plot(x, x**2, 'b.-') # blue line with dots
ax.plot(x, x**3, 'g--') # green dashed line
We can also define colors by color names or RGB hex codes and optionally provide an alpha value using the color
and alpha
keyword arguments. Alpha indicates opacity and its valued from 0 to 1.
fig, ax = plt.subplots()
ax.plot(x, x+1, color="blue", alpha=0.5) # half-transparant
ax.plot(x, x+2, color="#8B008B") # RGB hex code
ax.plot(x, x+3, color="#FF8C00") # RGB hex code
To change the line width, we can use the linewidth
or lw
keyword argument. The default linewidth
is 1
fig, ax = plt.subplots(figsize=(12,6))
ax.plot(x, x+1, color="red", linewidth=0.25)
ax.plot(x, x+2, color="red", linewidth=0.50)
ax.plot(x, x+3, color="red", linewidth=1.00)
ax.plot(x, x+4, color="red", linewidth=2.00)
The line style can be selected using the linestyle
or ls
keyword arguments.
Possible linestype options '-'
, '--'
, '-.'
, ':'
, 'steps'
ax.plot(x, x+5, color="green", lw=3, linestyle='-')
ax.plot(x, x+6, color="green", lw=3, ls='-.')
ax.plot(x, x+7, color="green", lw=3, ls=':')
Custom Dash
line, = ax.plot(x, x+8, color="black", lw=1.50)
line.set_dashes([5, 10, 15, 10]) # format: line length, space length, ...
Possible marker symbols: marker = '+', 'o', '*', 's', ',', '.', '1', '2', '3', '4',
ax.plot(x, x+ 9, color="blue", lw=3, ls='-', marker='+')
ax.plot(x, x+10, color="blue", lw=3, ls='--', marker='o')
ax.plot(x, x+11, color="blue", lw=3, ls='-', marker='s')
ax.plot(x, x+12, color="blue", lw=3, ls='--', marker='1')
Marker Size and Color
ax.plot(x, x+13, color="purple", lw=1, ls='-', marker='o', markersize=2)
ax.plot(x, x+14, color="purple", lw=1, ls='-', marker='o', markersize=4)
ax.plot(x, x+15, color="purple", lw=1, ls='-', marker='o', markersize=8, markerfacecolor="red")
ax.plot(x, x+16, color="purple", lw=1, ls='-', marker='s', markersize=8,
markerfacecolor="yellow", markeredgewidth=3, markeredgecolor="green");
In this section we will look at controlling axis sizing properties in a matplotlib figure.
We can configure the ranges of the axes using the set_ylim
and set_xlim
methods in the axis object, or axis('tight')
for automatically getting "tightly fitted" axes ranges:
fig, axes = plt.subplots(1, 3, figsize=(12, 4))
axes[0].plot(x, x**2, x, x**3)
axes[0].set_title("default axes ranges")
axes[1].plot(x, x**2, x, x**3)
axes[1].axis('tight')
axes[1].set_title("tight axes")
axes[2].plot(x, x**2, x, x**3)
axes[2].set_ylim([0, 60])
axes[2].set_xlim([2, 5])
axes[2].set_title("custom axes range");
There are many specialized plots we can create, such as barplots, histograms, scatter plots, and much more. Most of these type of plots we will actually create using pandas. But here are a few examples of these type of plots:
plt.scatter(x,y)
Histograms
from random import sample
data = sample(range(1, 1000), 100)
plt.hist(data)
Rectangular Box Plot
data = [np.random.normal(0, std, 100) for std in range(1, 4)]
# rectangular box plot
plt.boxplot(data,vert=True,patch_artist=True);
http://www.loria.fr/~rougier/teaching/matplotlib - A good matplotlib tutorial.